Mark schemes

Q1.

(a)

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.		
Level 3 5-6 marks	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3.	
Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.	
Level 1 1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order.	
Level 0	0 marks Insufficient correct chemistry to gain a mark.	

Stage 1

1a Heterogeneous means in a different phase/state from reactants

1b Catalyst speeds up reaction and is left unchanged **OR** lowers the activation energy for the reaction

Stage 2

2a Hydrogen and nitrogen/reactants adsorb onto the surface/ active sites of the iron 2b Bonds weaken/reaction takes place

2c Products desorb/leave from the surface (of the iron)

Stage 3

3a Large surface area (of iron) by using powder or small pellets or support medium/mesh 3b Catalyst poisoned / sulfur poisons or binds to the catalyst

3b Catalyst poisoned / sulfur poisons or binds to the catalyst 3c Active sites blocked

Ignore references to temperature and pressure

(b) Two negative ions repel

		1
	So activation energy is high	1
	$2 \ Fe^{2+} + S_2O_8{}^{2-} \rightarrow 2 \ SO_4{}^{2-} + 2 \ Fe^{3+}$	1
	2 Fe ³⁺ + 2 I ⁻ \rightarrow 2 Fe ²⁺ + I ₂ Ignore any state symbols given Allow multiples for both equations Allow equations in either order	1
(c)	(Zn ions) have only one oxidation state Or Zn ²⁺ is the only ion <i>Allow doesn't have variable oxidation state</i> <i>Allow cannot be oxidised to Zn</i> ³⁺ <i>Ignore has a full d shell</i>	1
(d)	M1 Amount of Fe = 0.998 ÷ 55.8 = 0.0179 mol	1
	M2 Amount of HCI = 0.0300 mol	1
	M3 HCI is the limiting reagent	1
	M4 Amount of H ₂ produced = 0.0150 mol $M4 = M2 \div 2$	1
	M5 T = 303 K P = 100 000 Pa	1
	$ V = \frac{0.0150 \times 8.31 \times 303}{100\ 000} = 3.78 \times 10^{-4} \text{ (m}^{3}) $ $ V = \frac{M4 \times 8.31 \times 303}{100\ 000} \text{ (m}^{3}) $	1
(e)	FeCO ₃ or iron(II) carbonate	1
	Green Allow white	1
(f)	Fe(H ₂ O) ₃ (OH) ₃ Ignore square brackets if added	1

	browi	n		
	2 [Fe	(H ₂ O) ₆] ³⁺ + 3 CO ₃ ^{2−} → 2 Fe(H ₂ O) ₃ (OH) ₃ + 3 H ₂ O + 3 CO ₂ Accept multiples	1	
(g)	M1 F OR F charg	e^{3+} is smaller (than Fe ²⁺) OR Fe ³⁺ has a greater charge e^{3+} has a greater charge density OR Fe ³⁺ has a greater ge to size ratio Penalise Fe (H ₂ O)- ³⁺ ions once in M1 or M2	1	
	M2 F	e ³⁺ ions are more polarising OR Fe ³⁺ ions polarise water molecules	1	
	more		1	
	M3 S H ⁺ ior Fe ³⁺ s	o more O-H bonds (in the water ligands) break OR more ns released OR weaken O-H bonds in ligands more (in the solution)		
		Do not allow Fe ³⁺ releases 3H ⁺ ions	1	[25]
Q2.				
		$CoO + 4 HCI \rightarrow [CoCl_4]^{2-} + H_2O + 2 H^+$		[1]
Q3.				
(a)	M1	(oxide ions react with water to) form/produce hydroxide ions $M1 O^{2-} + H_2O \rightarrow 2OH^{-}$ Ignore all non-ionic equations		
	M2	sodium hydroxide more soluble than magnesium hydroxide	1	
		M2 Ideas that more sodium hydroxide dissolves / dissociates Allow sodium oxide more soluble / dissociates more		
		than magnesium oxide NOT 'molecules' or 'atoms'	1	
(b)	P ₄ O ₁₀	$_{0}$ + 6H ₂ O \rightarrow 4H ₃ PO ₄ Allow multiples and fractions Allow ionic products		
		$NOT P_2O_5$	1	
(c)	M1	$V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$ Allow 1 mark if both equations correct, but in wrong order		

				1	
		M2	$V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$ ALLOW multiples	1	[5]
Q4.					
	(a)	M1 light	absorb (some) wavelengths/frequencies/colours/energies of (visible))	
			wavelengths/frequencies/colours/energies of (visible) light only needed once in the answer Allow absorption of a photon of light NOT uv light	1	
		MO	to promoto/avoito alactrone in d arbitale	1	
		IVIZ	Allow d-subshell / d-energy level / d-electrons Reference to 'd' can appear anywhere in the		
			answer	1	
		М3	remaining/complementary wavelengths/frequencies/colours/energies of (visible) light reflected/transmitted (to give colour seen)		
			NOT emissions/emitting or 'give out'	1	
	(b)	M1	$(\Delta) E = \frac{hc}{\lambda}$		
			Allow In two stages / expressed in words	1	
		M2	490 × 10 ⁻⁹		
			M2 for conversion	1	
		М3	$= (6.63 \times 10^{-34} \times \frac{3.00 \times 10^8}{490 \times 10^{-9}} _{490 \times 10^{-9}}) = 4.06 \times 10^{-19} \text{ J}$		
			Correct answer scores 3 marks 4.06×10^{-4} scores 2 marks (no M2)		
			$9.75 \times 10^{-32} = 1 \text{ mark (M2)}$	1	
	(c)	M 1	measure absorbance for (a range of) known concentrations		
			Insist on description of taking measurements	1	
		M2	plot graph absorbance v concentration		
			Allow concentration v absorbance	1	
		М3	read value of concentration for the measured absorbance from this		

	graph	If no M1 must montion both variables	
		Need to describe HOW they use the graph	1
(d)	M1 amo	punt of iron in each tablet = $4.66 \times 10^{-3} \times \frac{250}{1000}$ (= 0.001165 mol)	1
	M2 mas 65 <i>mg</i>	as of iron in each tablet = $4.66 \times 10^{-3} \times \frac{250}{1000} \times 55.8 = 0.0650 g =$:
		Correct answer = 2 marks Allow M2 for (M1 x 55.8 x 1000)	
			1 [11]
Q5. B			[4]
			[1]
Q6. A			[1]
Q7.			
-			[1]
Q8. A			
			[1]
Q9. C			
			[1]
Q10. (a)	[Fe(OH)₃(ŀ	H ₂ O) ₃]	1
	Brown		
		MZ: Allow red-brown	1
	2[Fe(H ₂ O)	$_{6}]^{3+} + 3CO_{3^{2-}} \rightarrow 2[Fe(OH)_{3}(H_{2}O)_{3}] + 3CO_{2} + 3H_{2}O_{3^{2-}} + 3H$	

	M	3: Allow correct equations with Na ₂ CO ₃	
	M	3: Ignore State symbols	1
(b)	[FeCl₄]⁻		1
			1
	[Fe(H₂O) ₆]³+ + <i>M</i> 2	4 Cl ⁻ \rightarrow [FeCl ₄] ⁻ + 6 H ₂ O 2: Allow correct equations with HCl	1
(c)	(XS) Zn (in aci Al	d or CHI or H₂SO₄) Iow KI/potassium iodide	
	,		1
(d)	[Fe(OH) ₂ (H ₂ O))4]	1
	green		1
<i>.</i> .			1
(e)	This question Scheme Instr question.	is marked using levels of response. Refer to the Mark uctions for Examiners for guidance on how to mark this	
	Level 3	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3	
	5-0 marks	Answer is illustrated using diagrams of at least 2 specific examples of pairs of cobalt or platinum complex isomers.	
	Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.	
		Answer is illustrated using diagrams of at least 1 specific example of a pair of cobalt or platinum complex isomers.	
	Level 1 1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order.	
		Answer is illustrated using at least 1 appropriate diagram or formula.	
	0 marks	Insufficient correct chemistry to gain a mark.	

Indicative Chemistry content

Stage 1: shapes of complexes

1a octahedral or 6 co-ordinate diagram

1b tetrahedral or square planar or 4 co-ordinate diagram

Stage 2: cis/ trans isomerism (or E-Z or geometric)

2a cis/trans isomerism in either square planar and/or octahedral complexes

2b Diagrams showing cis <u>and</u> trans isomerism in a square planar complex

2c Diagrams showing cis <u>and</u> trans isomerism in both isomers of octahdedral complexes eg draw cis <u>and</u> trans $M(H_2O)_4(OH)_2$ or $[M(NH_3)_4(H_2O)_2]^{2+}$

Stage 3: optical isomerism

3a optical isomerism / non superimposable mirror images in octahedral complexes

3b occurs with a specific bidentate ligands eg.C_2O_4^2- or $NH_2CH_2CH_2NH_2$

3c draw both optical isomers of eg [M(NH₂CH₂CH₂NH₂)₃]²⁺

[14]

6

1

1

1

Q11.

(a) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$

Allow 2 NaCl +
$$H_2SO_4 \rightarrow Na_2SO_4 + 2$$
 HCl

Proton donor

Allow (Bronsted-Lowry) acid

 $\begin{array}{ll} (b) & 2 \text{ NaBr}+2 \text{ H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + \text{SO}_2 + \text{Br}_2 + 2 \text{ H}_2 \text{O} \\ \text{Or} \\ & 2 \text{ NaBr}+3 \text{ H}_2 \text{SO}_4 \rightarrow 2 \text{ Na} \text{HSO}_4 + \text{SO}_2 + \text{Br}_2 + 2 \text{ H}_2 \text{O} \\ \text{Or} \\ & 2 \text{ H}^+ + 2 \text{ Br}^- + \text{H}_2 \text{SO}_4 \rightarrow \text{SO}_2 + \text{Br}_2 + 2 \text{ H}_2 \text{O} \\ \text{Or} \\ & 4 \text{ H}^+ + 2 \text{ Br}^- + \text{SO}_4^{2-} \rightarrow \text{SO}_2 + \text{Br}_2 + 2 \text{ H}_2 \text{O} \\ & \text{Ignore } 2 \text{ NaBr} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + 2 \text{ HBr} \\ & \text{Ignore } \text{NaBr} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na} \text{HSO}_4 + \text{HBr} \end{array}$

brown gas or brown fumes or orange gas or orange fumes Do not accept yellow solid

	Ignore fizzing and misty fumes	1	
	Oxidising agent Allow electron acceptor Ignore acid / proton donor	1	
(c)	(+)5 and -1	1	
(d)	Is oxidised <u>and</u> reduced Allow undergoes disproportionation Allows gains and loses electrons	1	
(e)	D AgBr Ignore state symbols	1	
	E Ag ₂ CO ₃	1	
	F CO ₂	1	
	$2 \text{ Ag}^{+} + \text{CO}_{3}^{2-} \rightarrow \text{Ag}_2\text{CO}_3$	1	
	AgBr + 2 NH ₃ \rightarrow Ag(NH ₃) ₂ ⁺ + Br ⁻ Or \rightarrow Ag(NH ₃) ₂ Br One mark for Ag(NH ₃) ₂ ⁺ and 1 mark for equation If D = AgCl, then allow 2 marks for AgCl + 2 NH ₃ \rightarrow Ag(NH ₃) ₂ ⁺ + CF	2 [1	3]
Q12. (a)	M1 Amount of $S_2O_{3^{2-}} = \frac{9.00 \times 0.0800}{1000} = 7.20 \times 10^{-4} \text{ mol}$	1	
	(From equations mol $S_2O_3^{2-}$ = mol Cu^{2+}) M2 Amount of Cu^{2+} in 25 cm ³ = 7.20 × 10 ⁻⁴ mol M2 = answer to M1 (1:1 ratio)	1	
	M3 Amount of Cu ²⁺ in 250 cm ³ = 7.20 v 10 ⁻⁴ \times 10 = 7.20 × 10 ⁻³ mol M3 = M2 × 10	1	

		1
	M5 mass = 0.985 g	
	M5 converting 985 mg to g	
		1
	% Cu = 0.457 x <u>100</u> = 46.4 %	
	M6 0.985	
	M6 is for the answer to 3 sf Allow $\%$ Cu = 457 x 100 = 46.4 % for M5 and M6	
	Allow $\%$ Cu = 437 x $\frac{100}{985}$ = 40.4 $\%$ 101 W3 and W0 985	
	Allow (M4 ×1000)/985 v 100 for M5 and M6	
		1
(b)	Use more of the alloy	_
		1
	Use a lower concentration of the thiosulfate solution/lower mass of	
	$Na_2S_2O_3$ to make solution	1
	Ovidiaira accet	
(C)		
		1
(d)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹	
()	Do not allow [Ar]3d ⁹	
		1
(e)	Full (3)d (sub)shell or (3)d ¹⁰	
		1
	No (d-d) transitions possible/ cannot absorb visible/white light	
	M2 is dependent on M1	
	Ignore reflects visible/white light	1
(£)	M_{1} , m_{1} (5.00/252.0) 0.0107 mol	
(1)	M1.11 = (5.00/233.8) = 0.0197 1101 Allow 254	
	If 126.9 or 127 used lose M1 only	
	,	1
	M2 : T = 458 K and P = 100 000 Pa	
		1
	$V = \underline{nRT}$ or $\underline{0.0197 \times 8.31 \times 458}$ or 7.50×10^4 (m ³)	
	M3 P 100 000	
	M3 If rearrangement incorrect can only score M1 and M2	1
	M4 : $V = 750 \text{ (cm}^3$)	
	M4. Allow 749	
		1

[16]

1

Q13.

(a)	$\begin{array}{l} Fe + H_2SO_4 \to FeSO_4 + H_2\\ & \textit{Allow Fe} + 2H^+ \to \mathit{Fe}^{2+} + \mathit{H}_2\\ & \textit{Allow Fe} + 2H^+ + \mathit{SO}_4^{2-} \to \mathit{Fe}^{2+} + \mathit{SO}_4^{2-} + \mathit{H}_2\\ & \textit{Allow Fe} + \mathit{H}_2SO_4 \to \mathit{Fe}^{2+} + \mathit{SO}_4^{2-} + \mathit{H}_2\\ & \textit{Allow Fe} + 2H^+ + \mathit{SO}_4^{2-} \to \mathit{Fe}SO_4 + \mathit{H}_2\\ & \textit{Allow multiples}\\ & \textit{Ignore state symbols} \end{array}$	1	
(b)	22.65 (cm ³)	1	
(c)	5 Fe ²⁺ + MnO ₄ ⁻ + 8 H ⁺ \rightarrow 5 Fe ³⁺ + Mn ²⁺ + 4 H ₂ O Allow multiples Ignore state symbols NOT if electrons shown	1	
(d)	colourless / (pale) green to (hint of) pink NOT to purple Allow to pale / hint of purple	1	
(e)	pipette burette both needed Allow (graduated/volumetric) pipette Allow (graduated/volumetric) burette NOT dropping pipette	1	
(f)	1.47(%) Allow 1.5(%)	1	[6]
Q14. D			[1]
Q15. (a)	$(\Delta S = \Sigma(S \text{ products}) - \Sigma(S \text{ reactants}))$		

= [(4 × 211) + (6 × 189)] - [(4 × 193) + (5 × 205)] = (1978 – 1797)

	181 (J K ⁻¹ mol ⁻¹)	1	
(b)	(∆ <i>G</i> = ∆ <i>H</i> − T∆ <i>S</i>) = - 905 - (600 + 273) × 181 × 10 ⁻³ If answer to (a) is incorrect, mark consequentially: - 905 - (873 × (a) × 10 ⁻³)	1	
	$\Delta G = -1063 / -1060 (kJ mol^{-1})$		
	If alternative value of ΔS = 211 used, answer = -1089 (kJ mol ⁻¹)	1	
(c)	ΔG becomes more negative/less positive Ignore increase/decrease/larger/smaller ΔG	1	
	The entropy change / ΔS is positive / $T\Delta S$ gets bigger / - $T\Delta S$ gets more negative. Consequential on wrong (a) If candidate does a calculation in (a) to produce ΔS negative then allow ΔG becomes less negative or more positive	1	
(d)	Reactant(s) adsorbed onto the (platinum surface) / (platinum) provides a surface / active sites	1	
	Reaction (on the surface) or bond breaking(weakening) / bond making occurs (on the surface)	1	
	Desorption (of the product) or wtte	1	
(e)	(Oxidation state changes from) -3 to +2 OR (+) 5	1	
(f)	$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O$ Allow multiples Ignore state symbols	1	[11]
Q16. (a)	Fe ²⁺ Accept any Fe(II) compound – correct formula or name	1	
	$E^{\Theta} VO_{2^{+}}(/VO^{2+}) > E^{\Theta} Fe^{3+}(/Fe^{2+}) > E^{\Theta} VO^{2+}(/V^{3+})$	I	

If calculations of EMF are provided producing EMFs = 0.23(V) and -0.43(V), with a comment, allow M2

Do not allow dative covalent or coordinate

	(covalent)	1
(b)	CI ⁽⁻⁾ not donating lone pair (to Cu ⁽²⁺⁾)	
	Cl ⁽⁻⁾ does not form a coordinate/dative bond (to Cu ⁽²⁺⁾) Allow without charges but penalise incorrect charges	
	CF/it is bonded ionically (to Cu ²⁺)	1
(c)	$[Cu(H_2O)_6]^{2+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$	1
	Deep blue / Royal blue / Dark blue (solution)	1
	Allow combination of:	
	$[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow [Cu(H_2O)_4(OH)_2] + 2NH_{4^+}$	
	$[Cu(H_2O)_4(OH)_2] + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 2H_2O + 2OH^{-}$	
	Do not penalise missing square brackets Ignore initial colour of Cu ²⁺ (aq)	
(d)	$CuCO_{2}$ or conner carbonate	
(9)	Penalise incorrect oxidation state	
	Allow correct formula for basic copper carbonate	1
(e)	HCI/ hvdrochloric acid	
()	Ignore concentration	
	Allow soluble chloride salt	
	Also allow any reagent which leads to a change in colour of solution due to a change in ligands (e.g. $NH_2CH_2CH_2NH_2$) or change in oxidation state (e.g. SO_2) and associated correct equations.	
	-, ,	1
	$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$	
	$[Cu(H_2O)_6]^{-1} + 4HCI \longrightarrow [CuCl_4]^{-1} + 6H_2O + 4HV$	
	Mark independently	1
(f)	(3)d ¹⁰ or has full (3)d (sub) shell/orbital	
(')	Penalise incorrect principal quantum number	
		1
	It is colourless/cannot absorb (frequencies of) visible light Ignore clear	
		1
		[9]

1

Q20. 26.50×0.02 1000 = 5.30 × 10⁻⁴ Moles MnO₄-(a) 1 Moles in 25cm³ sample / pipette C₂O₄²⁻ (from acid and salt) = 5.30 × 10⁻⁴ × 5/2 = (1.325 × 10⁻³) 1 10.45×0.1 Moles NaOH = 1000 (= 1.045×10^{-3}) 1 So moles C₂O_{4²⁻} from acid in 25cm³ sample / pipette = 1.045 × 10⁻³ ÷ 2 = 5.225 × 10⁻⁴ 1 Hence moles C₂O_{4²⁻} in sodium ethanedioate in 25 cm³ $= 1.325 \times 10^{-3} - 5.225 \times 10^{-4}$ (= 8.025 × 10⁻⁴) 1 So moles C₂O₄²⁻ in sodium ethanedioate in original sample $= 8.025 \times 10^{-4} \times 10$ (= 8.025 × 10⁻³) 1 Mass Na₂C₂O₄ = 8.025 × 10⁻³ × 134(.0) = 1.075(35) g So % sodium ethanedioate in original sample 1 1.075(35)1.90 $\times 100 = 56.6 \%$ to 3 sig fig 1 The first CE is penalised by 2 marks; further errors are penalised by one mark each $M2 = M1 \times 5/2$ $M4 = M3 \div 2$ M5 = M2 - M4 (do not allow if negative and do not allow = M4-M2) If no subtraction, max = 5 (M1, M2, M3, M4 and M6) If incorrect subtraction, max = 6 (M1, M2, M3, M4, M6 and M7) $M6 = M5 \times 10$ (M6 can be scored by multiplying M2 and M4 by 10 before subtraction (giving $1.325 \times 10^{-2} - 5.225 \times 10^{-2}$ $10^{-3} = 8.025 \times 10^{-3}$) $M7 = M6 \times 134$ $M8 = (M7/1.90) \times 100$ Allow 56.5 - 56.8% $[Fe(H_2O)_6]^{3+} + 3C_2O_4^{2-} \rightarrow [Fe(C_2O_4)_3]^{3-} + 6H_2O_6^{3-}$ (b)

There are <u>6</u> Fe–O bonds broken and then made / <u>same</u> number and type of bond being broken and made.

1

Fe C (c) Ignore all charges even if wrong Ignore absence of square brackets Candidates do not need to show 3D shape 1 90° or 180° 1 optical 1 (d) The ethanedioic acid is only present in small quantities/low concentration in these foods. 1 [14] Q21. С [1] Q22. В [1] Q23. D [1] Q24. $[Fe(H_2O)_6]^{3+} + 4Cl^- \rightarrow FeCl_4^- + 6H_2O$ (a) 1 (b) Cl- is a bigger ligand 1 So only 4Cl⁻ can fit around the metal Allow fewer CF can fit around the metal 1

1

1

1

	$\begin{bmatrix} H_2 N \\ H_2 N \\ N \\ Fe \\ N \\ H_2 \\ H_2 \\ H_2 \\ H_2 \\ H_2 \\ N \end{bmatrix}^{2+}$		
(0)	M1 for structure of complex		
	M2 for correct charge	1	
		1	
(d)	Change in entropy is positive	1	
(e)	$5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$	1	
(f)	Amount of manganate (VII) = 6.50×10^{-4} mol	1	
	Amount of iron(II) = 3.25×10^{-3} mol ie M1 × 5	1	
	Mass of iron = 0.181 g = 181 mg		
	Allow M2 × 55.8	1	
	Percentage Fe = 181/1980 × 100 = <u>9.14(%)</u> 3 sf	1	
(g)	Colourless to pale pink	1	[12]
			··-1
Q25.			
(a)	Multidentate – EDTA can form many / six dative bonds with central cation	1	
	Ligand – lone pair (on N or O of EDTA) can form dative bond with copper(II) ions.		

6 circles drawn on EDTA⁴⁻ structure – 2 × N and 4 × –O

(b) Calibrate a colorimeter / produce a calibration curve.

By testing the colorimeter with solutions of copper-EDTA complex of known concentration.

		1
	Add excess EDTA salt to the sample.	1
(c)	$[Cu(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Cu(EDTA)]^{2-} + 6H_2O$	1
	Amount of copper(II) = (25.0 × 7.56 × 10 ⁻⁵) /1000 = 1.89 × 10 ⁻⁶ mol	1
	Volume of EDTA ⁴⁻ = (1.89 × 10 ⁻⁶ / 0.001) × 1000 = 1.89 cm ³	1
	This is too small to be accurate.	1
	Dilute the EDTA ⁴⁻ solution / use larger volume of river water.	1
		[11]
Q26. D		[1]
Q27. D		
		[1]
Q28. (a)	An electron pair on the ligand	1
	Is donated from the ligand to the central metal ion	1
(b)	Blue precipitate	1
	Dissolves to give a dark blue solution	1
	$[Cu(H_2O)_6]^{2+} + 2NH_3 \longrightarrow Cu(H_2O)_4(OH)_2 + 2NH_4^+$	1
	$Cu(H_2O)_4(OH)_2 + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 2OH^- + 2H_2O$	1
(c)	$[Cu(NH_{3})_{4}(H_{2}O)_{2}]^{2+} + 2H_{2}NCH_{2}CH_{2}NH_{2} \longrightarrow [Cu(H_{2}NCH_{2}CH_{2}NH_{2})_{2}(H_{2}O)_{2}]^{2+} + 4NH_{3}$	1

(d)	Cu–N bonds formed have similar enthalpy / energy to Cu–N bonds broken		
		1	
	And the same number of bonds broken and made	1	
(e)	3 particles form 5 particles / disorder increases because more particles are formed / entropy change is positive	1	
	Therefore, the free-energy change is negative M2 can only be awarded if M1 is correct	1	[11]