Mark schemes

Q1.
(a)
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { This question is marked using levels of response. Refer to the } \\
\text { Mark Scheme Instructions for Examiners for guidance on how to } \\
\text { mark this question. }\end{array} \\
\hline \text { Level 3 } & \begin{array}{l}\text { All stages are covered and the description of each } \\
\text { stage is generally correct and virtually complete. } \\
\text { Answer is communicated coherently and shows a } \\
\text { logical progression from stage 1 to stage 2 and stage } \\
\text { 3. }\end{array}
$$

marks\end{array}\right\}\)| All stages are covered but the description of each |
| :--- |
| Ltage may be incomplete or may contain inaccuracies |
| OR two stages are covered and the explanations are |
| generally correct and virtually complete. Answer is |
| mainly coherent and shows progression from stage 1 |
| to stage 2 and/or stage 3. |$|$| 3-4 |
| :--- |
| marks |

Stage 1

1a Heterogeneous means in a different phase/state from reactants
1b Catalyst speeds up reaction and is left unchanged OR
lowers the activation energy for the reaction

Stage 2

2a Hydrogen and nitrogen/reactants adsorb onto the surface/
active sites of the iron
2b Bonds weaken/reaction takes place
2c Products desorb/leave from the surface (of the iron)
Stage 3
3a Large surface area (of iron) by using powder or small pellets or support medium/mesh
3b Catalyst poisoned / sulfur poisons or binds to the catalyst
3c Active sites blocked
Ignore references to temperature and pressure
(b) Two negative ions repel

So activation energy is high
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$
Ignore any state symbols given
Allow multiples for both equations
Allow equations in either order
(c) (Zn ions) have only one oxidation state

Or
Zn^{2+} is the only ion
Allow doesn't have variable oxidation state
Allow cannot be oxidised to Zn^{3+}
Ignore has a full d shell
(d) M 1 Amount of $\mathrm{Fe}=0.998 \div 55.8=0.0179 \mathrm{~mol}$

M2 Amount of $\mathrm{HCl}=0.0300 \mathrm{~mol}$

M 3 HCl is the limiting reagent

M4 Amount of H_{2} produced $=0.0150 \mathrm{~mol}$ M4 $=M 2 \div 2$
$\mathrm{M} 5 \mathrm{~T}=303 \mathrm{KP}=100000 \mathrm{~Pa}$
$M 6\left[\begin{array}{c}V\left(=\frac{0.0150 \times 8.31 \times 303}{100000}\right)=3.78 \times 10^{-4}\left(\mathrm{~m}^{3}\right) \\ V\left[=\frac{M 4 \times 8.31 \times 303}{100000}\right)\left(\mathrm{m}^{3}\right)\end{array}\right.$
(e) FeCO_{3} or iron(II) carbonate

Green
Allow white
(f) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$

Ignore square brackets if added
brown
$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}^{2-} \rightarrow 2 \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$
Accept multiples
(g) $\mathrm{M} 1 \mathrm{Fe}^{3+}$ is smaller (than Fe^{2+}) OR Fe ${ }^{3+}$ has a greater charge OR Fe^{3+} has a greater charge density OR Fe^{3+} has a greater charge to size ratio

Penalise $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ ions once in M1 or M2

M2 Fe ${ }^{3+}$ ions are more polarising OR Fe^{3+} ions polarise water molecules more

M3 So more O-H bonds (in the water ligands) break OR more H^{+}ions released OR weaken O-H bonds in ligands more (in the Fe^{3+} solution)

Do not allow Fe^{3+} releases $3 \mathrm{H}^{+}$ions

Q2.
D

$$
\mathrm{CoO}+4 \mathrm{HCl} \rightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}^{+}
$$

Q3.
(a) M1 (oxide ions react with water to) form/produce hydroxide ions
$\mathrm{M1} \mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}$
Ignore all non-ionic equations

M2 sodium hydroxide more soluble than magnesium hydroxide
M2 ideas that more sodium hydroxide dissolves / dissociates
Allow sodium oxide more soluble / dissociates more than magnesium oxide NOT 'molecules' or 'atoms'
(b) $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$

Allow multiples and fractions
Allow ionic products
NOT $\mathrm{P}_{2} \mathrm{O}_{5}$
(c) $\mathrm{M} 1 \quad \mathrm{~V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}$

Allow 1 mark if both equations correct, but in wrong order

M2 $\quad \mathrm{V}_{2} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}$
ALLOW multiples

Q4.
(a) M1 absorb (some) wavelengths/frequencies/colours/energies of (visible) light
wavelengths/frequencies/colours/energies of (visible) light only needed once in the answer
Allow absorption of a photon of light NOT uv light

M2 to promote/excite electrons in d-orbitals
Allow d-subshell / d-energy level / d-electrons
Reference to 'd' can appear anywhere in the answer

M3 remaining/complementary wavelengths/frequencies/colours/energies of (visible) light reflected/transmitted (to give colour seen)

NOT emissions/emitting or 'give out'
(b) M1 $\quad(\Delta) E=\frac{h c}{\lambda}$

Allow in two stages / expressed in words

M2 490×10^{-9}
M2 for conversion

M3 $=\left(6.63 \times 10^{-34} \times \frac{\frac{3.00 \times 10^{8}}{490 \times 10^{-9}}}{490 \times 10^{-9}}\right)=4.06 \times 10^{-19} \mathrm{~J}$
Correct answer scores 3 marks
4.06×10^{-n} scores 2 marks (no M2)
$9.75 \times 10^{-32}=1$ mark (M2)
(c) M1 measure absorbance for (a range of) known concentrations

Insist on description of taking measurements

M2 plot graph absorbance v concentration
Allow concentration v absorbance

M3 read value of concentration for the measured absorbance from this
graph
If no M1, must mention both variables
Need to describe HOW they use the graph
(d) M1 amount of iron in each tablet $=4.66 \times 10^{-3} \times \frac{250}{1000} \quad(=0.001165 \mathrm{~mol})$ M2 mass of iron in each tablet $=4.66 \times 10^{-3} \times \frac{250}{1000} \times 55.8=0.0650 \mathrm{~g}=$ 65 mg

Correct answer = 2 marks
Allow M2 for (M1 x 55.8×1000)

Q5.
B

Q6.
A

Q7.
D

Q8.
A

Q9.
C

Q10.
(a) $\left[\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$

Brown
M2: Allow red-brown
$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow 2\left[\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

M3: Allow correct equations with $\mathrm{Na}_{2} \mathrm{CO}_{3}$
M3: Ignore State symbols
(b) $\left[\mathrm{FeCl}_{4}\right]^{-}$

$$
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{FeCl}_{4}\right]^{-}+6 \mathrm{H}_{2} \mathrm{O}
$$

M2: Allow correct equations with HCl
(c) (XS) Zn (in acid or CHI or $\mathrm{H}_{2} \mathrm{SO}_{4}$)

Allow Kl/potassium iodide
(d) $\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
green
(e)

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.
\(\left.$$
\begin{array}{|l|l|}\hline & \begin{array}{l}\text { All stages are covered and the description of each } \\
\text { stage is generally correct and virtually complete. } \\
\text { Answer is communicated coherently and shows a } \\
\text { Legical progression from stage 1 to stage 2 and stage 3 }\end{array} \\
\mathbf{5 - 6} \text { marks } & \begin{array}{l}\text { Answer is illustrated using diagrams of at least 2 } \\
\text { specific examples of pairs of cobalt or platinum } \\
\text { complex isomers. }\end{array} \\
\hline & \begin{array}{l}\text { All stages are covered but the description of each } \\
\text { stage may be incomplete or may contain inaccuracies } \\
\text { OR two stages are covered and the explanations are } \\
\text { Lenerally correct and virtually complete. Answer is } \\
\text { mainly coherent and shows progression from stage 1 }\end{array}
$$

to stage 2 and/or stage 3.\end{array}\right\}\)| Answer is illustrated using diagrams of at least 1 |
| :--- |
| specific example of a pair of cobalt or platinum |
| complex isomers. |$|$

Indicative Chemistry content

Stage 1: shapes of complexes

1a octahedral or 6 co-ordinate diagram
1 b tetrahedral or square planar or 4 co-ordinate diagram

Stage 2: cis/ trans isomerism (or E-Z or geometric)

2a cis/trans isomerism in either square planar and/or octahedral complexes

2 b Diagrams showing cis and trans isomerism in a square planar complex

2c Diagrams showing cis and trans isomerism in both isomers of octahdedral complexes eg draw cis and trans $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ or $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$

Stage 3: optical isomerism

3a optical isomerism / non superimposable mirror images in octahedral complexes

3b occurs with a specific bidentate ligands eg. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ or $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

3c draw both optical isomers of eg $\left[\mathrm{M}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}$

Q11.

(a) $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl}$

Allow $2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$

Proton donor
Allow (Bronsted-Lowry) acid
(b) $2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Or
$2 \mathrm{NaBr}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Or
$2 \mathrm{H}^{+}+2 \mathrm{Br}-+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Or

$$
\begin{gathered}
4 \mathrm{H}^{+}+2 \mathrm{Br}-+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\text { lgnore } 2 \mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \\
\text { Ignore } \mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HBr}
\end{gathered}
$$

brown gas or brown fumes or orange gas or orange fumes Do not accept yellow solid

Ignore fizzing and misty fumes

Oxidising agent
Allow electron acceptor
Ignore acid / proton donor
(c) $\quad(+) 5$ and -1
(d) Is oxidised and reduced

Allow undergoes disproportionation
Allows gains and loses electrons
(e) D AgBr

Ignore state symbols

E Ag ${ }_{2} \mathrm{CO}_{3}$
$\mathrm{F} \mathrm{CO}_{2}$
$2 \mathrm{Ag}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}$
$\mathrm{AgBr}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2^{+}}+\mathrm{Br}-$
$\mathrm{Or} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}$
One mark for $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2^{+}}$and 1 mark for equation
If $D=A g C l$, then allow 2 marks for
$\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2^{+}}+\mathrm{CH}$

Q12.
(a) M1 Amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\frac{9.00 \times 0.0800}{1000}=7.20 \times 10^{-4} \mathrm{~mol}$
(From equations mol S2 $\mathrm{O}_{3}{ }^{2-}=\mathrm{mol} \mathrm{Cu}^{2+}$)
M2 Amount of Cu^{2+} in $25 \mathrm{~cm}^{3}=7.20 \times 10^{-4} \mathrm{~mol}$
M2 = answer to M1 (1:1 ratio)
1
M3 Amount of Cu^{2+} in $250 \mathrm{~cm}^{3}=7.20 \mathrm{v} 0^{-4} \mathbf{x 1 0}=7.20 \times 10^{-3} \mathrm{~mol}$

$$
M 3=M 2 \times 10
$$

1
M4 Mass of copper $=7.20 \times 10^{-3} \mathrm{~mol} \times \mathbf{6 3 . 5}=0.457 \mathrm{~g}$

$$
M 4=M 3 \times 63.5
$$

M5 mass $=0.985 \mathrm{~g}$
M5 converting 985 mg to g

```
    \(\% \mathrm{Cu}=0.457 \times \frac{100}{0.985}=46.4 \%\)
M6 is for the answer to 3 sf
Allow \% Cu \(=457 \times \frac{100}{985}=46.4 \%\) for M5 and M6
Allow (M4 \(\times 1000\) )/985 v 100 for M5 and M6
```

(b) Use more of the alloy

Use a lower concentration of the thiosulfate solution/lower mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ to make solution
(c) Oxidizing agent

Allow electron acceptor
(d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$

Do not allow [Ar]3d ${ }^{9}$
(e) Full (3)d (sub)shell or (3)d ${ }^{10}$

No (d-d) transitions possible/ cannot absorb visible/white light
M2 is dependent on M1
Ignore reflects visible/white light
(f) $\quad \mathrm{M} 1: \mathrm{n}=(5.00 / 253.8)=0.0197 \mathrm{~mol}$

Allow 254
If 126.9 or 127 used lose M1 only

M2: $\mathrm{T}=458 \mathrm{~K}$ and $\mathrm{P}=100000 \mathrm{~Pa}$

M3 $\quad \mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}$ or $\frac{0.0197 \times 8.31 \times 458}{100000}$ or $7.50 \times 10^{-4}\left(\mathrm{~m}^{3}\right)$
M3 If rearrangement incorrect can only score M1 and M2

M4: $V=750\left(\mathrm{~cm}^{3}\right)$
M4: Allow M3 $\times 10^{6}$
M4: Allow 749

Q13.

(a) $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}$

Allow $\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}$
Allow $\mathrm{Fe}+2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{Fe}^{2+}+\mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2}$
Allow $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}^{2+}+\mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2}$
Allow $\mathrm{Fe}+2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}$
Allow multiples
Ignore state symbols
(b) $\quad 22.65\left(\mathrm{~cm}^{3}\right)$
(c) $5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

Allow multiples
Ignore state symbols
NOT if electrons shown
(d) colourless / (pale) green to (hint of) pink

NOT to purple
Allow to pale / hint of purple
(e) pipette
burette
both needed
Allow (graduated/volumetric) pipette
Allow (graduated/volumetric) burette NOT dropping pipette
(f) 1.47(\%)

Allow 1.5(\%)

Q14.
D

Q15.
(a) $\quad(\Delta S=\Sigma(S$ products $)-\Sigma(S$ reactants $))$
$=[(4 \times 211)+(6 \times 189)]-[(4 \times 193)+(5 \times 205)]=(1978-1797)$
$181\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
(b) $(\Delta G=\Delta H-\mathrm{T} \Delta S)=-905-(600+273) \times 181 \times 10^{-3}$

If answer to (a) is incorrect, mark consequentially:

- 905 - (873 $\left.\times(a) \times 10^{-3}\right)$
$\Delta G=-1063 /-1060\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
If alternative value of $\Delta \mathrm{S}=211$ used, answer $=-1089\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(c) $\Delta \mathrm{G}$ becomes more negative/less positive

Ignore increase/decrease/larger/smaller ΔG

The entropy change / ΔS is positive / $T \Delta S$ gets bigger / $-T \Delta S$ gets more negative.

Consequential on wrong (a)
If candidate does a calculation in (a) to produce ΔS negative then allow ΔG becomes less negative or more positive
(d) Reactant(s) adsorbed onto the (platinum surface) / (platinum) provides a surface / active sites

Reaction (on the surface) or bond breaking(weakening) / bond making occurs (on the surface)

Desorption (of the product) or wtte
(e) (Oxidation state changes from) -3 to $+2 \mathrm{OR}(+) 5$
(f) $\quad 2 \mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+3 \mathrm{H}_{2} \mathrm{O}$

Allow multiples
Ignore state symbols

Q16.

(a) Fe^{2+}

Accept any Fe(II) compound - correct formula or name

$$
\begin{aligned}
& E^{\ominus} \mathrm{VO}_{2^{+}\left(/ \mathrm{VO}^{2+}\right)}>E^{\ominus} \mathrm{Fe}^{3+}\left(/ \mathrm{Fe}^{2+}\right)>\mathrm{E}^{\ominus} \mathrm{VO}^{2+}\left(/ \mathrm{V}^{3+}\right) \\
& \text { If calculations of EMF are provided producing EMFs } \\
& =0.23(\mathrm{~V}) \text { and }-0.43(\mathrm{~V}) \text {, with a comment, allow } M 2
\end{aligned}
$$

allow $\underline{E}^{\ominus} \mathrm{Fe}^{3+}\left(/ \mathrm{Fe}^{2+}\right)$ value of +0.77 is between the E^{\ominus} values for the electrode half-equations containing the V species or wtte

(b) $\quad(+) 4$

IV or four
1

Ignore absence of charge
Wedges, dotted lines and [] not required
Do not penalise bond from H to V (in water ligands)

Cis/trans
allow E / Z, geometric and stereo(isomerism)
(d) $2 \mathrm{NH}_{4} \mathrm{VO}_{3} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{3}$

Accept multiples
Ignore state symbols
(e) $\mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}$
$\mathrm{V}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O} 2 \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}$
Both equations needed for 1 mark in this order Allow multiples

Q17.
C

Q18.
B \& C

Q19.
(a) Covalent

Do not allow dative covalent or coordinate
(covalent)
(b) $\mathrm{Cl}(-)$ not donating lone pair (to $\mathrm{Cu}^{(2+1)}$
$\mathrm{Cl}(-)$ does not form a coordinate/dative bond (to $\mathrm{Cu}^{(2+)}$)
Allow without charges but penalise incorrect charges
Cl^{\prime}-it is bonded ionically (to Cu^{2+})
(c) $\quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

Deep blue / Royal blue / Dark blue (solution)
Allow combination of:
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{NH}_{4}{ }^{+}$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$
Do not penalise missing square brackets
Ignore initial colour of Cu^{2+} (aq)
(d) CuCO_{3} or copper carbonate

Penalise incorrect oxidation state
Allow correct formula for basic copper carbonate
(e) $\mathrm{HCl} /$ hydrochloric acid

Ignore concentration
Allow soluble chloride salt
Also allow any reagent which leads to a change in colour of solution due to a change in ligands (e.g. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$) or change in oxidation state (e.g. SO_{2}) and associated correct equations.
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$
Mark independently
(f) (3) d^{10} or has full (3)d (sub) shell/orbital

Penalise incorrect principal quantum number

It is colourless/cannot absorb (frequencies of) visible light Ignore clear

Q20.
(a) Moles $\mathrm{MnO}_{4^{-}} \frac{26.50 \times 0.02}{1000}=5.30 \times 10^{-4}$

Moles in $25 \mathrm{~cm}^{3}$ sample / pipette $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ (from acid and salt) $=5.30 \times 10^{-4} \underline{\mathbf{5 / 2}}=\left(\mathbf{1 . 3 2 5} \times 10^{-3}\right)$

Moles $\mathrm{NaOH}=\frac{\frac{10.45 \times 0.1}{1000}}{}\left(=1.045 \times 10^{-3}\right)$
So moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ from acid in $25 \mathrm{~cm}^{3}$ sample / pipette $=1.045 \times 10^{-3} \underline{\underline{2}}=5.225 \times 10^{-4}$

Hence moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in sodium ethanedioate in $25 \mathrm{~cm}^{3}$
$=1.325 \times 10^{-3}-5.225 \times 10^{-4} \quad\left(=8.025 \times 10^{-4}\right)$

So moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in sodium ethanedioate in original sample $=8.025 \times 10^{-4} \times 10 \quad\left(=8.025 \times 10^{-3}\right)$

Mass $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=8.025 \times 10^{-3} \times 134(.0)=1.075(35) \mathrm{g}$
So \% sodium ethanedioate in original sample
$\frac{1.075(35)}{1.90} \times 100=56.6 \% \quad$ to 3 sig fig
The first CE is penalised by 2 marks; further errors are penalised by one mark each
$M 2=M 1 \times 5 / 2$
$M 4=M 3 \div 2$
M5 = M2 - M4 (do not allow if negative and do not allow = M4-M2)
If no subtraction, max =5 (M1, M2, M3, M4 and M6)
If incorrect subtraction, max $=6$ (M1, M2, M3, M4, M6 and M7)
$M 6=M 5 \times 10$
(M6 can be scored by multiplying M2 and M4 by 10 before subtraction (giving $1.325 \times 10^{-2}-5.225 \times$ $10^{-3}=8.025 \times 10^{-3}$)
M7 = M6 $\times 134$
M8 $=($ M7/1.90 $) \times 100$ Allow $56.5-56.8 \%$
(b) $\quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O}$

There are $\underline{6} \mathrm{Fe}-\mathrm{O}$ bonds broken and then made / same number and type of bond being broken and made.
(c)

Ignore all charges even if wrong
Ignore absence of square brackets
Candidates do not need to show 3D shape
90° or 180°
optical
(d) The ethanedioic acid is only present in small quantities/low concentration in these foods.

Q21.
C

Q22.
B

Q23.
D

Q24.
(a) $\quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{FeCl}_{4}^{-}+6 \mathrm{H}_{2} \mathrm{O}$
(b) Cl^{-}is a bigger ligand

So only $4 \mathrm{Cl}^{-}$can fit around the metal
Allow fewer Cl^{-}can fit around the metal

(c)

M1 for structure of complex
M2 for correct charge
(d) Change in entropy is positive
(e) $5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
(f) Amount of manganate $(\mathrm{VII})=6.50 \times 10^{-4} \mathrm{~mol}$

Amount of iron $(\mathrm{II})=3.25 \times 10^{-3} \mathrm{~mol}$
ie M1 $\times 5$

Mass of iron $=0.181 \mathrm{~g}=181 \mathrm{mg}$
Allow M2 $\times 55.8$

Percentage $\mathrm{Fe}=181 / 1980 \times 100=\underline{9.14}(\%) 3 \mathrm{sf}$
(g) Colourless to pale pink

Q25.
(a) Multidentate - EDTA can form many / six dative bonds with central cation.

Ligand - lone pair (on N or O of EDTA) can form dative bond with copper(II) ions.

6 circles drawn on EDTA ${ }^{4-}$ structure $-2 \times N$ and $4 \times-O$
(b) Calibrate a colorimeter / produce a calibration curve.

Abstract

concentration.

1

Add excess EDTA salt to the sample.
(c) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+$ EDTA $^{4-} \rightarrow[\mathrm{Cu}(\text { EDTA })]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Amount of copper $(\mathrm{II})=\left(25.0 \times 7.56 \times 10^{-5}\right) / 1000=1.89 \times 10^{-6} \mathrm{~mol}$

Volume of EDTA ${ }^{4-}=\left(1.89 \times 10^{-6} / 0.001\right) \times 1000=1.89 \mathrm{~cm}^{3}$

This is too small to be accurate.

Dilute the EDTA ${ }^{4-}$ solution / use larger volume of river water.

Q26.
D

Q27.
D

Q28.
(a) An electron pair on the ligand

Is donated from the ligand to the central metal ion
(b) Blue precipitate

Dissolves to give a dark blue solution
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4^{+}}$
$\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
(c) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \longrightarrow$ $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{NH}_{3}$
(d) $\mathrm{Cu}-\mathrm{N}$ bonds formed have similar enthalpy / energy to $\mathrm{Cu}-\mathrm{N}$ bonds broken

And the same number of bonds broken and made
(e) 3 particles form 5 particles / disorder increases because more particles are formed / entropy change is positive

Therefore, the free-energy change is negative M2 can only be awarded if M1 is correct

